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One of the major challenges in biology is the correct identification of promoter regions. Computational
methods based on motif searching have been the traditional approach taken. Studies have shown that DNA
structural properties, such as free energy, curvature, and stress-induced duplex destabilization (SIDD) are useful
in promoter classification, as well. In this paper, these properties were compared for their effectiveness in
correctly classifying promoters. When using a decision tree for promoter classification based on DNA structural
properties, SIDD showed a slight improvement over free energy and curvature, with f-score values 70.9%, 67.1%,
and 61.5%, respectively.
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Identification of promoters is an important issue in biology, given that they are central in
understanding the process by which genes are regulated. Wet-lab methods for promoter identification provide
accuracy but suffer from being time-consuming. To facilitate faster processing, computational methods are
required. Although far from perfect, they do provide a means for quickly identifying potential targets for
experimental validation.

Several computational methods for promoter classification have been proposed. Most include some
analysis of sequence patterns commonly found in promoter regions, such as -10 and -35 motifs [1, 2].
However, these patterns are not always sufficiently conserved to allow for adequate classification.
Furthermore, there are clearly other factors not directly related to sequence motifs that are closely associated
with promoter regions.

Promoter regions have unique characteristics in their physical structure that play major roles in
transcription by facilitating protein-DNA interactions. Some of these properties include GC skew, bendability,
free energy, curvature, base stacking, and stress-induced duplex destabilization (SIDD). Studies have reported
impressive results using DNA structural properties for identifying promoter regions [3, 4, 5, 6]. This study
assesses the feasibility of a computer-based classification approach for promoter identification in prokaryotes
based on DNA free energy [7], curvature [8], and SIDD [9].

Analysis was performed on the genome of E. coli K12. Each sequence value was converted to its
corresponding numeric structural property value.

Dataset.

The whole genome of E. coli K12 was downloaded from NCBI. Experimentally verified transcription
start sites were obtained from the Regulon database (Release: 6.4) [10]. This database release provided a
compilation of 1771 promoter sequences. The dataset was filtered for unique promoters with known TSS
locations, resulting in 1648 records.

Structural profiles were computed from the sequence data. The SIDD profile computations were
obtained from Benham [5]. The free energy profile was computed using the nearest-neighbor thermodynamic
parameters of base pairings described in [11]. The curvature profile was computed using the CURVATURE
program [12, 13].

Classification

The training and testing datasets were constructed from the E. coli K12 structural profile data. Positive
instances (promoters) were defined as the 500 bp region from -400 to +100, with respect to TSSs. This dataset
was composed of 1648 positive instances and 4944 negative instances, which represents a 3:1 ratio of negatives
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and positives. A randomly selected two-third and one-third split was used for training and testing data,

respectively. The Weka data mining suite [14] was used to perform the classifications using its J48 decision
tree.

Evaluation Measures
Classification results were used to evaluate the predictability of the structural properties. In order to compare
predictions using a one-dimensional performance measure, the weighted average of the precision and recall
(known as f-score) was computed for curvature, free energy and SIDD.
Precision, recall, and f-score were defined as follows,

. . TP
precision = )
TP + FP
TP
recall = )
TP +FN
f-score = 2 xprecisionxrecall (3)

precision + recall

where TP, TN, FP, and FN are the numbers of true positives, true negatives, false positives and false negatives,
respectively.

A comparison of free energy, curvature, and SIDD structural profiles is shown in the following figures.
To create the structural data, each sequence value in E. coli K12 was converted to its corresponding numeric
structural property value. Next, the average value at each location was computed for all promoters (for the
500 bp region from -400 to +100, with respect to transcription start sites at +1).
Signatures of structural properties

Figure 1 is DNA free energy. High free energy values indicate low stability, and indicate regions
where strand separation is more likely to occur. Figure 1 shows a low stability region from -100 to +50, with
respect to the TSS. A distinctive peak appears near -10. So, the -10 region may be the least stable.
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Figure 1: Average free energy values for the promoter regions
Similar changes in promoter regions can be seen in Figure 2 for SIDD, represented as G(x). G(x)
corresponds to the incremental free energy needed for the base pair at position x to always remain open. It
begins a noticeable decrease until its lowest points near -35 and -10, then begins an increase.
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Figure 2: Average SIDD G(x) values for the promoter regions
Curvature increases from -400 to its highest at -53, before beginning to decrease. All three properties
show noticeable increases or decreases in promoter regions and distinctive spikes near some known promoter
indicators, such as -10, and -35. Thus, structural properties appear to be good candidates for identifying
promoter regions.
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Figure 3: Average DNA curvature values for the promoter regions

Evaluation

Weka’s J48 decision tree was used to perform the classifications of promoters and non-promoters. The
construction of the training and testing sets is described in the methods sections. The f-score was computed
for curvature, free energy and SIDD. For free energy, the resulting f-score was 67.1% (promoter 50.9%,
non-promoter 74.9%); SIDD 70.9% (promoter 56.4%, non-promoter 77.8%); and curvature 61.5% (promoter
42%, non-promoter 71.8%). All methods performed better at identifying non-promoters than promoters.
SIDD performed best overall, followed closely by free energy, and then curvature with the lowest f-score.

One of the major challenges in biology is the correct identification of promoter regions.
Computational methods based on motif searching have been the traditional approach taken. This study has
shown that DNA structural properties, such as free energy, curvature, and stress-induced duplex destabilization
(SIDD) are useful in promoter classification, as well.

Future research will involve combining multiple structural-based predictors with sequence-based
methods. For example, in [5] it was shown that SIDD was not directly related to primary sequences or unigque
motifs, and not positively correlated with DNA curvature. Thus, using SIDD with other predictive sequence
and structural properties, particularly those not strongly correlated, may be fruitful. In addition, it may be
useful to determine whether a classifier trained on one genome predicts well on others. Also, combining
multiple classifiers as part of a voting system, such as an ensemble, may prove beneficial.
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OaHOM M3 OCHOBHBIX Mp06JeM B OMOJIOTHU SIBJSAETCA INpaBUJbHasA HJeHTHUKalUs PEerdoHOB -
npoMoyTepoB. TpafULIMOHHO NPHUMEHSJUCh BBIYMC/IMTEJNbHbIE METOJbl, OCHOBaHHble Ha MOHCKe MOTHBOB.
HUccnenoBaHua moKasaad, YTO CTPYKTypHbIe cBodcTBa JHK, Takue kak cBoGOJHasi 3Heprus, KpUBHU3HA H
JlecTabunsanus AyIJieKca, BbI3BaHHbIe cTpeccoM (SIDD), Takke moJie3Hb! B KJaaccU$UKALUK TPOMOYTOPOB. B
3TOH CTaThbe 3TH CBOMCTBA CPaBHUBAIUCh sl MX 3PQPEKTUBHOCTU NpPHU NPABWIBHOH KiaccupUKanuu
npoMoyTopoB. [Ipu HcnoJb30BaHUU JiepeBa pellleHUH AJd KjaaccuPuKalu¥d NPOMOYTOpa, OCHOBAHHOI'O Ha
cTpykTypHbIX cBoiicTBax [IHK, SIDD npoieMoHCTpUpOBa HeGOJIbIIOE YIydlleHHUe [0 CPaBHEHUIO CO CBOGOIHOM
3Hepruei U KPUBU3HOMU, IpU 3TOM 3HavyeHus f-score coctaBasiiu 70,9%, 67,1% u 61,5% cooTBETCTBEHHO.

Kamouesvwle caoea: kaaccugukayus npomoymopos, kpususHa [JHK, SIDD, ceo600Has sHepzus
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BuoJsiorusijlarel MaHbI3/1bl MacesieiepiH 6ipi - MpoMoyTep aMaKTapbIH AYPbIC aHbIKTAy. Ecentey aaici
MOTHUBTI i371ey Heri3iH/Je AacTypJii Tocin peTiHAe KoJlaHbLIFAH. 3epTTey KepKeceTKeH/leH, 6oc sHeprus, JHK
KUCBIKTBIFbl CTPECCIIeH TYbIHAAUTBIH AyIiekc aAectadbuiusdauusicbl (SIDD) cekingi JHK-HBIH KypbLIBIMABIK,
KacueTi, mpoMoTopJsiap KjaaccuduKalnusacbiHa KaxkeT. Bys Makasajga mpoMoTopJiap KJaacCUPUKAIUSCHIHBIH,
TUIMJIJIT] YIIiH OCBbI KypblbIMAApPFa caablCThIpy Kyprizingi. IHK - HbIH KypblIbIM/bIK KAaCUeTiHe HeTi3/le/ITeH,
NpoMOTOpJap KJjJaccuduKaluusiChblHA IlellliM afalllblH KojZaHy 6apcbiHza, SIDD 6oc 3sHeprus men /[HK
KHCBIKTBIFbIHA KapaFaH/a aMaJibl KaKcapFaHbIH KOPCeTTi, COHan-aK colikecinie f-score 70,9%,67,1% >xoHe
61,5% 60s/bI.

Tyiiin ce3dep: npomoymopsap kaaccugukayuscot, JHK Kucotkmbirst, SIDD, 60c sHepaus
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