Preview

Bulletin of Kazakh National Women's Teacher Training University

Advanced search

PARALLEL IMPLEMENTATION OF THE YANENKO METHOD FOR SOLVING THE HEAT EQUATION

https://doi.org/10.52512/2306-5079-2021-86-2-127-135

Abstract

In this article, we will consider the parallel implementation of the Yanenko algorithm for the two-dimensional heat equation, and the sweep method was used to numerically solve  the heat equation. The implementation of the sequential  program is carried out simply in two-part steps by the longitudinal-transverse run, however, parallelization of two fractional  steps with an indefinite scheme is difficult due to the creation of inter-process communication of data. In the course of the study, a parallel data distribution with one-dimensional decompositions is shown in the application of the Yanenko method for calculating heat conductivity. The results of parallelization of this task using the 1D decomposition were obtained and acceleration and efficiency images were analyzed in order to evaluate the parallel program. Currently, modeling of processes by numerical solution of differential equations is widely used in every field of Science, the most common methods bring the differential problem to a system of linear algebraic equations, methods that solve such systems include various startup options. The emergence and development of computing systems using Multi-Core processors and graphics accelerators make the problem of startup parallelization relevant; the results of the study are used for teaching in research institutes and universities.

About the Authors

A. N. Semyatova
al-Farabi Kazakh National University
Kazakhstan

Alinura N. Semyatova, masters degree

Almaty



E. G. Kenzhebek
al-Farabi Kazakh National University
Kazakhstan

Erzhan G. Kenzhebek, doctoral student

Almaty



References

1. Volosova A.V. (2020) Parallel`nye metody i algoritmy. Uchebnoe posobie. [Parallel methods and algorithms. Textbook]. M.: MADI. – 176 s. [in Russian]

2. Samarskij A.A., Nikolaev E.S. (1987) Metody resheniya setochnykh uravnenij. [Methods for solving grid equations]. M.: Nauka. – 561 s. [in Russian]

3. Samarskij A.A. (2005) Vvedenie v chislennye metody [Introduction to numerical methods]. SPb.: Lan. – 288 s. [in Russian]

4. Davidson A., Zhang Y., D. Owens J. (2011) An auto-tuned method for solving large tridiagonal systems on the GPU. Conference Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE International, P. 956-965

5. Kim H.-S., Wu S., Chang L.-W., Hwu W.-M. (2011) A scalable tridiagonal solver for GPUs. In Parallel Processing (ICPP), 2011 International Conference. P. 444 –453.

6. Hockney R. W., Jesshope C. R. (1986) Parallel computers: architecture, programming and algorithm. Hilger. Bristol. P. 274-280.

7. Bykov A.N., Erofeev A.M., Sizov E.A., Fedorov A.A. (2013) Metod rasparallelivaniya progonki na gibridnykh EVM // Vychislitel`nye metod` i programmirovanie. T. 14. Razdel 2. S. 43-47. [Method of parallelization of the run on hybrid computers // Computational methods and programming. Vol. 14. Section 2. pp. 43-47]. [in Russian]

8. Jeffers J., Reinders J. (2013) Intel Xeon Phi Coprocessor High-Performance Programming. Morgan Kaufmann Publishers Inc. San Francisco. 432 p.

9. Goddeke D., Strzodka R. (2011) Cyclic reduction tridiagonal solvers on GPUs applied to mixed-precision multigrid. IEEE Transactions on Parallel and Distributed Systems. Vol. 22. P. 22–32.

10. Starchenko A.V., Berczun V.N. (2013) Metody parallel`nykh vychislenij [Methods of parallel computing].. Tomsk: Izd-vo Tom. un-ta. – 223 s. [in Russian]

11. Ilyin S.A., Starchenko A.V. (2015) Rasparallelivanie skhemy pokomponentnogo rasshhepleniya dlya chislennogo resheniya uravneniya teploprovodnosti // Parallel`nye vychislitel`nye tekhnologii (PaVT' 2015): Trudy mezhdunarodnoj nauchnoj konferenczii (Ekaterinburg, 31 marta – 2 aprelya 2015 g.). Chelyabinsk: Izdatelskij czentr YuUrGU. S. 399-402. [Parallelization of the component-by-component splitting scheme for the numerical solution of the heat equation // Parallel computing Technologies (PaVT’ 2015): Proceedings of the International Scientific Conference (Yekaterinburg, March 31 – April 2, 2015). Chelyabinsk: SUSU Publishing Center. pp. 399-402]. [in Russian]

12. Bykov A.N., Veselov V.A., Voronin B.L., Erofeev A.M. (2008) Metodika RAMZES-KP dlya rascheta prostranstvennykh dvizhenij mnogokomponentnykh teploprovodnykh sred v ejlerovo-lagranzhevykh koordinatakh. Vyp. 13. Sarov. C. 50–57. [The RAMSES-KP method for calculating the spatial motions of multicomponent heat-conducting media in Eulerian-Lagrangian coordinates. Vol. 13. Sarov. C. 50-57]. [in Russian]

13. Chang L.-W., Stratton J.A., Kim H.-S., Hwu W.-M. (2012) A scalable, numerically stable, highperformance tridiagonal solver using GPUs. High Performance Computing, Networking, Storage and Analysis (SC), 2012 International Conference for. IEEE Computer Society Press. 11 p.

14. Polizzi E., Sameh A. (2006) A parallel hybrid banded system solver: The SPIKE algorithm. Parallel Computing. Vol. 32, No. 2. P. 177–194.

15. Golovashkin D.L. (2002) Primenenie metoda vstrechnykh progonok dlya sinteza parallel`nogo algoritma resheniya setochnykh uravnenij trekhdiagonal`nogo vida // Kompyuternaya optika. N24. S. 33-39 [Application of the method of counter pregonar for the synthesis of parallel algorithms for the solution of the difference equations is tridiagonal form // Computer optics. N24. P. 33-39] [in Russian]

16. Yanenko N.N., Konovalov A.N., Bugrov A.N., Shustov G.V. (1978) Ob organizaczii parallel`nykh vychislenij i “rasparallelivanii” progonki // Chislennye metody mekhaniki sploshnoj sredy. T. 9. #7. S. 139-146. [The organization of parallel computing and “parallel” run // Numerical methods of continuum mechanics. Vol. 9. No. 7. pp. 139-146] [in Russian]

17. Sapronov I.S., Bykov A.N. (2009) Parallel`no-konvejernyj algoritm [Parallel-pipeline algorithm] // Atom. # 44. S. 24-25 [in Russian]

18. Kenzhebek E.G., Imankulov T.S., Matkerim B., Akhmed-Zaki D.Zh. (2019) Zhylu otkizgishtiktin 2D tendeuiushin kualau adisin parallel iske asyru // Biyarova T. N., Valdemar Vujczik professorlardyn 70 zhyldyk zhane professor E. N. Amirgalievtin 60 zhyldygy merejtojlaryna arnalgan "Informatika zhane қoldanbaly matematika" atty IV Khalykaralyk gylymi-praktikalyk konferencziya, 25-29 қyrkujek 2019, Almaty, Kazakstan. #1, S. 261-269.[Parallel implementation of the pursuit method for the 2D equation of thermal conductivity // IV International Scientific and practical conference "Informatics and Applied Mathematics", dedicated to the 70th anniversary of the birth of professors Biarova T. N., Valdemar Vuytsik and the 60th anniversary of Professor E. N. Amirgaliyev, September 25-29, 2019, Almaty, Kazakhstan. No. 1, pp. 261-269] [in Kazakh].


Review

For citations:


Semyatova A.N., Kenzhebek E.G. PARALLEL IMPLEMENTATION OF THE YANENKO METHOD FOR SOLVING THE HEAT EQUATION. Bulletin of Kazakh National Women's Teacher Training University. 2021;(2):127-135. (In Kazakh) https://doi.org/10.52512/2306-5079-2021-86-2-127-135

Views: 554


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-5079 (Print)