Preview

ЭЛЕКТРОННАЯ СТРУКТУРА И ОПТИЧЕСКАЯ ПРОВОДИМОСТЬ ПОЛНОГО СПЛАВА ГЕЙСЛЕРА Fе2TiSn

Полный текст:

Аннотация

Полный сплав Гейслера Fe2SnTi представляет интерес как дешевый и экологически чистый термоэлектрический материал для прямого преобразования тепла в электричество. В последнее время значительное количество работ было опубликовано в литературе, где его электронная структура изучалась методом теории функционала плотности. Однако разброс полученных данных настолько широк, от наличия псевдощели до предсказания запрещенной зоны шириной около 1 эВ, что невозможно сделать однозначные выводы об электронных свойствах данного соединения. В данной работе мы выполнили высокоточные расчеты электронной структуры сплава Гейслера Fe2SnTi с использованием метода GW0 и обнаружили, что это полупроводник с шириной запрещенной зоны 0,34 эВ. Для объяснения экспериментов по измерению оптической проводимости, при которой наблюдался металлический отклик, были исследованы различные дефектные структуры.

Об авторах

Т. М. Инербаев
Евразийский национальный университет им. Л.Н. Гумилева; Китайский педагогический университет
Казахстан

к.ф.-м.н., доцент, Физико-технический факультет; PhD, и.о. доцента

Астана

Гуанчжоу



Ф. У. Абуова
Китайский педагогический университет
Китай

PhD, и.о. доцента

Гуанчжоу



А. У. Абуова
Китайский педагогический университет
Китай

PhD, и.о. доцента

Гуанчжоу



Список литературы

1. Y. Fujita, K. Endo, M. Terada, R. Kimura, Magnetic properties of heusler type alloys M2XSn (M = Fe, Co or Ni, X = Ti or V), Journal of Physics and Chemistry of Solids 33 (7) (1972) 1443 – 1446.

2. T. Graf, C. Felser, S. S. Parkin, Simple rules for the understanding of Heusler compounds, Progress in Solid State Chemistry 39 (1) (2011) 1–50. doi:10.1016/j.progsolidstchem.2011.02.001. URL http://www.sciencedirect.com/science/article/pii/S0079678611000021

3. Y. Nishino, S. Deguchi, U. Mizutani, Thermal and transport properties of the heusler-type fe2val1−xgex (0 ≤ x ≤ 0.20) alloys: Effect of doping on lattice thermal conductivity, electrical resistivity, and seebeck coefficient, Phys. Rev. B 74 (2006) 115115. doi:10.1103/PhysRevB.74.115115. URL https://link.aps.org/doi/10.1103/PhysRevB.74.115115

4. M. Mikami, A. Matsumoto, K. Kobayashi, Synthesis and thermoelectric properties of microstructural Heusler Fe2VAl alloy, Journal of Alloys and Compounds 461 (1) (2008) 423–426. doi:10.1016/j.jallcom.2007.07.004. URL http://www.sciencedirect.com/science/article/pii/S0925838807015149

5. M. N. Y. M. U. Kato, H.; Kato, S. Asano, Effect of Silicon Substitution on Thermoelectric Properties of Heusler-type Fe2VAl Alloy, J. Jpn. Inst. Met. 65 (2001) 652–656.

6. E. Alleno, Review of the thermoelectric properties in nanostructured fe2val, Metals 8 (11). doi:10.3390/met8110864. URL https://www.mdpi.com/2075-4701/8/11/864

7. C. S. Lue, Y.-K. Kuo, Thermal and transport properties of the Heuslertype compounds Fe2−xTi1+xSn, Journal of Applied Physics 96 (5) (2004) 2681–2683.

8. S. V. Dordevic, D. N. Basov, A. Slebarski, M. B. Maple, L. Degiorgi, Electronic structure and charge dynamics of the heusler alloy fe2TiSn probed by infrared and optical spectroscopy, Phys. Rev. B 66 (2002) 075122. doi:10.1103/PhysRevB.66.075122. URL https://link.aps.org/doi/10.1103/PhysRevB.66.075122

9. M. Meinert, M. P. Geisler, J. Schmalhorst, U. Heinzmann, E. Arenholz, W. Hetaba, M. St¨oger-Pollach, A. H¨utten, G. Reiss, Experimental realization of a semiconducting full-heusler compound: fe2TiSi, Phys. Rev. B 90 (2014) 085127. doi:10.1103/PhysRevB.90.085127. URL https://link.aps.org/doi/10.1103/PhysRevB.90.085127

10. T. Zou, T. Jia, W. Xie, Y. Zhang, M. Widenmeyer, X. Xiao, A. Weidenkaff, Band structure modification of the thermoelectric Heusler-phase TiFe2Sn via Mn substitution, Phys. Chem. Chem. Phys. 19 (2017) 18273–18278. doi:10.1039/C7CP02744C. URL http://dx.doi.org/10.1039/C7CP02744C

11. I. Pallecchi, M. Pani, F. Ricci, S. Lemal, D. I. Bilc, P. Ghosez, C. Bernini, N. Ardoino, G. Lamura, D. Marr´e, Thermoelectric properties of chemically substituted full-heusler fe2tisn1-xsbx (x=0,0.1, and 0.2) compounds, Phys. Rev. Materials 2 (2018) 075403. doi:10.1103/PhysRevMaterials.2.075403. URL https://link.aps.org/doi/10.1103/PhysRevMaterials.2.075403

12. K. Renard, A. Mori, Y. Yamada, S. Tanaka, H. Miyazaki, Y. Nishino, Thermoelectric properties of the Heusler-type Fe2VTaxAl1x alloys, Journal of Applied Physics 115 (3) (2014) 033707. arXiv:https://doi.org/10.1701063/1.4861419, doi:10.1063/1.4861419. URL https://doi.org/10.1063/1.4861419

13. H. Miyazaki, S. Tanaka, N. Ide, K. Soda, Y. Nishino, Thermoelectric properties of Heusler-type off-stoichiometric Fe2V1+xAl1-xalloys, Materials Research Express 1 (1) (2013) 015901. doi:10.1088/2053-1591/1/1/015901. URL https://doi.org/10.1088%2F2053-1591%2F1%2F1%2F015901

14. M. Vasundhara, V. Srinivas, V. V. Rao, Electronic transport in heuslertype fe2val1−xmx alloys m=b, in, si, Phys. Rev. B 77 (2008) 224415. doi: 10.1103/PhysRevB.77.224415. URL https://link.aps.org/doi/10.1103/PhysRevB.77.224415180

15. M. Schwall, B. Balke, Phase separation as a key to a thermoelectric high efficiency, Phys. Chem. Chem. Phys. 15 (2013) 1868–1872. doi:10.1039/ C2CP43946H. URL http://dx.doi.org/10.1039/C2CP43946H

16. C. S. Lue, C. F. Chen, J. Y. Lin, Y. T. Yu, Y. K. Kuo, Thermoelectric properties of quaternary heusler alloys fe2val1−xsix, Phys. Rev. B 75 (2007) 064204. doi:10.1103/PhysRevB.75.064204. URL https://link.aps.org/doi/10.1103/PhysRevB.75.064204

17. S. Masuda, K. Tsuchiya, J. Qiang, H. Miyazaki, Y. Nishino, Effect of high-pressure torsion on the microstructure and thermoelectric properties of Fe2VAl-based compounds, Journal of Applied Physics 124 (3) (2018) 035106. arXiv:https://doi.org/10.1063/1.5034390, doi:10.1063/1.5034390. URL https://doi.org/10.1063/1.5034390

18. M. Mikami, Y. Kinemuchi, K. Ozaki, Y. Terazawa, T. Takeuchi, Thermo electric properties of tungsten-substituted Heusler Fe2VAl alloy, Journal of Applied Physics 111 (9) (2012) 093710. arXiv:https://doi.org/10.1063/1.4710990, doi:10.1063/1.4710990. URL https://doi.org/10.1063/1.4710990

19. Biswas Kanishka, He Jiaqing, Blum Ivan D., Wu Chun-I, Hogan 200 Timothy P., Seidman David N., Dravid Vinayak P., Kanatzidis Mercouri G., High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature 489 (2012) 414. doi:https: //doi.org/10.1038/nature1143910.1038/nature11439. URL https://www.nature.com/articles/nature11439#205supplementary-information

20. E. S. Toberer, A. Zevalkink, G. J. Snyder, Phonon engineering through crystal chemistry, J. Mater. Chem. 21 (2011) 15843–15852. doi:10.1039/ C1JM11754H. URL http://dx.doi.org/10.1039/C1JM11754H210

21. S. Yabuuchi, M. Okamoto, A. Nishide, Y. Kurosaki, J. Hayakawa, Large Seebeck Coefficients of Fe2TiSn and Fe2TiSi: First-Principles Study, Applied Physics Express 6 (2) (2013) 025504.

22. A. Slebarski, M. B. Maple, E. J. Freeman, C. Sirvent, D. Tworuszka, ´ M. Orzechowska, A. Wrona, A. Jezierski, S. Chiuzbaian, M. Neumann, Weak ferromagnetism induced by atomic disorder in fe2TiSn, Phys. Rev. B 62 (2000) 3296–3299. doi:10.1103/PhysRevB.62.3296. URL https://link.aps.org/doi/10.1103/PhysRevB.62.3296

23. B. Xu, L. Yi, Optical properties of the intermetallic compound fe2tisn, Journal of Physics D: Applied Physics 41 (9) (2008) 095404.

24. J.-Y. Jong, J. Zhu, S.-I. Pak, G.-H. Sim, Theoretical Investigation of Mechanical, Electronic, and Thermal Properties of Fe2TiSi and Fe2TiSn Under Pressure, Journal of Electronic Materials 45 (10) (2016) 5104–5111. doi:10.1007/s11664-016-4722-z. URL https://doi.org/10.1007/s11664-016-4722-z225

25. M. L. C. Buffon, G. Laurita, L. Lamontagne, E. E. Levin, S. Mooraj, D. L. Lloyd, N. White, T. M. Pollock, R. Seshadri, Thermoelectric performance and the role of anti-site disorder in the 24-electron Heusler TiFe2Sn, Journal of Physics: Condensed Matter 29 (40) (2017) 405702.

26. H. Luo, G. Liu, F. Meng, J. Li, E. Liu, G. Wu, Half-metallicity in Fe230 based Heusler alloys Fe2TiZ (Z=Ga, Ge, As, In, Sn and Sb), Journal of Magnetism and Magnetic Materials 324 (20) (2012) 3295 – 3299.

27. J.-Y. Jong, J. Zhu, M.-G. Jon, Y. Zhou, J. Kim, J. Yan, Theoretical investigation of stabilities and physical properties of low cost fe-based full-heusler materials, Journal of Alloys and Compounds 693 (2017) 462 – 467. 235

28. S.S. Shastri, S.K. Pandey, A comparative study of different exchangecorrelation functionals in understanding structural, electronic and thermoelectric properties of Fe2VAl and Fe2TiSn compounds, Computational Materials Science 143 (2018) 316 – 324.

29. M. Meinert, Modified becke-johnson potential investigation of half-metallic heusler compounds, Phys. Rev. B 87 (2013) 045103.

30. D.I. Bilc, G. Hautier, D. Waroquiers, G.-M. Rignanese, P. Ghosez, Lowdimensional transport and large thermoelectric power factors in bulk semiconductors by band engineering of highly directional electronic states, Phys. Rev. Lett. 114 (2015) 136601.

31. A. Jezierski, A. Slebarski, Atomic disorder and magnetism in Fe2TiSn ´ 245 alloy, Journal of Magnetism and Magnetic Materials 223 (1) (2001) 33–38. doi:10.1016/S0304-8853(00)00593-X. URL http://www.sciencedirect.com/science/article/pii/S030488530000593X

32. V. Popescu, P. Kratzer, S. Wimmer, H. Ebert, Native defects in the co2tiz (z=si,ge,sn) full heusler alloys: Formation and influence on the thermoelectric properties, Phys. Rev. B 96 (2017) 054443. doi:10.1103/PhysRevB.96.054443. URL https://link.aps.org/doi/10.1103/PhysRevB.96.054443

33. A. Slebarski, Electron-correlation effects in a disordered Fe ´ 255 2TiSn Heusler alloy, Journal of Physics D: Applied Physics 39 (5) (2006) 856–864.

34. M. S. Hybertsen, S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B 34 (1986) 5390–5413. doi:10.1103/PhysRevB.34.5390.260 URL https://link.aps.org/doi/10.1103/PhysRevB.34.5390

35. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758–1775. doi:10.1103/PhysRevB.59.1758. URL https://link.aps.org/doi/10.1103/PhysRevB.59.1758265

36. G. Kresse, J. Furthm¨uller, Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169–11186. doi:10.1103/PhysRevB.54.11169. URL https://link.aps.org/doi/10.1103/PhysRevB.54.11169

37. P.E.Bl¨ochl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953–17979. doi:10.1103/PhysRevB.50.17953. URL https://link.aps.org/doi/10.1103/PhysRevB.50.17953

38. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple [phys. rev. lett. 77, 3865 (1996)], Phys. Rev. Lett. 78 (1997) 1396–1396. doi:10.1103/PhysRevLett.78.1396. URL https://link.aps.org/doi/10.1103/PhysRevLett.78.1396

39. A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, G. E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, The Journal of Chemical Physics 125 (22) (2006) 224106. arXiv:https://doi.org/10.1063/1.2404663, doi:10.1063/1.2404663. URL https://doi.org/10.1063/1.2404663

40. Y. Fujita, M. Terada, R. Kimura, K. Endo, Magnetic properties of heusler type alloys m2xsn (m= fe, co or ni, x = ti or v), Journal of physics and chemistry of solids 33 (7) (1972) 1443–&. doi:10.1016/S0022-3697(72)80437-2.

41. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An lsda+u study, Phys. Rev. B 57 (1998) 1505–1509. doi:10.1103/PhysRevB.57.1505. URL https://link.aps.org/doi/10.1103/PhysRevB.57.1505

42. R. Kubo, Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems, Journal of the Physical Society of Japan 12 (6) (1957) 570– 586. arXiv: https://doi.org/10.1143/JPSJ.12.570, doi:10.1143/JPSJ.12.570. URL https://doi.org/10.1143/JPSJ.12.570

43. D.A. Greenwood, The Boltzmann Equation in the Theory of Electrical Conduction in Metals, Proceedings of the Physical Society 71 (4) (1958) 585–596. doi:10.1088/0370-1328/71/4/306. URL https://doi.org/10.1088%2F0370-1328%2F71%2F4%2F306

44. J. Sun, A. Ruzsinszky, J. P. Perdew, Strongly constrained and appropri300 ately normed semilocal density functional, Phys. Rev. Lett. 115 (2015) 036402. doi:10.1103/PhysRevLett.115.036402. URL https://link.aps.org/doi/10.1103/PhysRevLett.115.036402

45. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential, Phys. Rev. Lett. 102 (2009) 305 226401. doi:10.1103/PhysRevLett.102.226401. URL https://link.aps.org/doi/10.1103/PhysRevLett.102.226401

46. M. Goffinet, P. Hermet, D. I. Bilc, P. Ghosez, Hybrid functional study of prototypical multiferroic bismuth ferrite, Phys. Rev. B 79 (2009) 014403. doi:10.1103/PhysRevB.79.014403. URL https://link.aps.org/doi/10.1103/PhysRevB.79.014403


Для цитирования:


Инербаев Т.М., Абуова Ф.У., Абуова А.У. ЭЛЕКТРОННАЯ СТРУКТУРА И ОПТИЧЕСКАЯ ПРОВОДИМОСТЬ ПОЛНОГО СПЛАВА ГЕЙСЛЕРА Fе2TiSn. Вестник Казахского национального женского педагогического университета. 2019;(3):47-56.

For citation:


Inerbaev T.M., Abuova F.U., Abuova A.U. ELECTRONIC STRUCTURE AND OPTICAL CONDUCTIVITY OF THE FULL HEUSLER ALLOY Fе2TiSn. Bulletin of Kazakh National Women's Teacher Training University. 2019;(3):47-56. (In Russ.)

Просмотров: 19


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2306-5079 (Print)