Preview

Вестник Казахского национального женского педагогического университета

Расширенный поиск

ИССЛЕДОВАНИЕ ПРИЧИН РАЗРУШЕНИЯ КОНТАКТОВ В ТЕРМОЭЛЕКТРИЧЕСКИХ ЭЛЕМЕНТАХ НА ОСНОВЕ ТЕТРАДИМИДА

Аннотация

Поликристаллические термоэлектрические элементы n-типа Bi2(Te0.95Se0.05)3 и p-типа (Bi0.25Sb0.75)2Te3 были изготовлены по модифицированной методике Бриджмена с последующей электроискровой резкой. Был собран термоэлектрический микромодуль, состоящий из 12 термоэлементов с антидиффузионным барьером Ni и высокотемпературным припоем SnSb между ними. Для исследования термоэлементов в условиях, близких к рабочим, микромодуль отжигался при 170 ° С в течение 1000 часов. Выяснилось, что после отжига более 40 часов наблюдаются разрушения приконтактной зоны n-типа, что приводит к полному разрыву контактов микромодулей. Наши результаты показали, что при отжиге припой SnSb протекает в незащищенную боковую поверхность термоэлемента и контактирует с плоскостями расщепления, вдоль которых олово может диффундировать в объем термоэлемента. В противоположность этому, контакты p-типа не были разрушены припоем. Различие воздействия припоя на термоэлементы n- и p-типа объяснялось в рамках теории функционала плотности (DFT). Расчеты на замещение, диффузию и термодинамическую стабильность показали, что замещение Bi-Sn в четыре раза выгоднее, чем замены Sb-Sn. Кроме того, было подсчитано, что для системы Bi2Te3 + Sn более выгодно образовывать TeSn и Bi-фазу, а система Sb2Te3 + Sn термодинамически стабильна.

Об авторах

Ф. У. Абуова
Евразийский Национальный Университет им. Л.Н. Гумилева
Казахстан

PhD доктор, и.о. доцента, Физико-Технический Факультет

Астана



А. У. Абуова
Евразийский Национальный Университет им. Л.Н. Гумилева
Казахстан

PhD доктор, и.о. доцента, Физико-Технический Факультет

Астана



Е. Ж. Ашим
Национальный Исследовательский Технологический Университет МИСИС
Россия

магистрант 2-года обучения

Москва



Список литературы

1. 1 B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science (80-. ). 320, 634 (2008).

2. M. Kashiwagi, S. Hirata, K. Harada, Y. Zheng, K. Miyazaki, M. Yahiro, and C. Adachi. Combined effect of nanoscale grain size and porosity on lattice thermal conductivity of bismuth-telluride-based bulk alloys. Appl. Phys. Lett. 98, 023114 (2011).

3. W. Xie, D. A. Hitchcock, H. J. Kang, J. He, X. Tang, M. Laver, and B. Hammouda, The microstructure network and thermoelectric properties of bulk (Bi,Sb)2Te3 Appl. Phys. Lett. 101, 113902 (2012).

4. Y. Zhang, X. Jia, L. Deng, X. Guo, H. Sun, B. Sun, B. Liu, and H. Ma. Composition controlled preparation of Cu–Zn–Sn precursor films for Cu2ZnSnS4 solar cells using pulsed electrodeposition. J. Alloys Compd. 632, 514 (2015).

5. Q. Lognoné and F. Gascoin, Reactivity, stability and thermoelectric properties of n-Bi2Te3 doped with different copper amounts. J. Alloys Compd. 635, 107 (2015).

6. L. E. Bell, Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science (80-. ). 321, 1457 (2008).

7. K. Koumoto and T. Mori, Thermoelectric Nanomaterials: Materials Design and Applications (Springer, Heidelberg, 2013).

8. B. M. Goltsman, B. A. Kudinov, and I. A. Smirnov, Thermoelectric Semiconductor Materials Based on Bi2Te3 (Defense Technical Information Center, Ft. Belvoir, 1973).

9. V. T. Bublik, A. I. Voronin, E. A. Vygovskaya, V. F. Ponomarev, N. Y. Tabachkova, and O. V. Toropova. Structure of Profiled Crystals Based on Solid Solutions of Bi2Te3 and Their X-Ray Diagnostics. Russ. Microelectron. 40, 634 (2011).

10. W. Liu, H. Wang, L. Wang, X. Wang, G. Joshi, G. Chen, and Z. Ren. Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications. J. Mater. Chem. A 1, 13093 (2013).

11. S. Chen, T. Yang, C. Wu, H. Hsiao, H. Chu, J. Huang, and T. Liou. Residual stress measurement on TiN thin films by combing nanoindentation and average X-ray strain (AXS) method. J. Alloys Compd. 686, 847 (2016).

12. V. D. Demcheglo, A. I. Voronin, N. Y. Tabachkova, V. T. Bublik, and V. F. Ponomaryov. Structure of Bi2Se0.3Te2.7 alloy plates obtained by crystallization in a flat cavity by the Bridgman method. Semiconductors 51, 1021 (2017).

13. V. T. Bublik, A. I. Voronin, E. A. Vygovskaya, V. F. Ponomarev, N. Y. Tabachkova, and O. V. Toropova. Analysis of anisotropy of properties on the basis of studies of texture of coarse-grained ingots of thermoelectric materials. Inorg. Mater. 47, 1563 (2011).

14. T. C. Harman. Special Techniques for Measurement of Thermoelectric Properties. J. Appl. Phys. 29, 1373 (1958).

15. Y. Feutelais, B. Legendre, N. Rodier, and V. Agafonov. A study of the phases in the bismuth - tellurium system. Mater. Res. Bull. 28, 591 (1993).

16. S. A. Semiletov. Kristallografiya 1, 403 (1956).

17. A. F. Ioffe. Semiconductor Thermoelements, and Thermoelectric Cooling (Infosearch, London, 1957).

18. R. W. G. Wyckoff, in Cryst. Struct. Second Ed. Arsenic and Chlorine Co-Doping to CH3NH3PbI3 Perovskite Solar Cells (Interscience Publishers, New York, 1963), pp. 85–237.

19. P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

20. J. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 (1996).

21. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

22. G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

23. G. Henkelman, B. Uberuaga, and H. Jónsson. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901 (2000).


Рецензия

Для цитирования:


Абуова Ф.У., Абуова А.У., Ашим Е.Ж. ИССЛЕДОВАНИЕ ПРИЧИН РАЗРУШЕНИЯ КОНТАКТОВ В ТЕРМОЭЛЕКТРИЧЕСКИХ ЭЛЕМЕНТАХ НА ОСНОВЕ ТЕТРАДИМИДА. Вестник Казахского национального женского педагогического университета. 2018;(3):59-66.

For citation:


Abuova F.U., Abuova A.U., Ashim E.A. INVESTIGATION OF THE CAUSES OF DESTRUCTION OF CONTACTS IN TETRIMITE THERMOELECTRIC ELEMENTS. Bulletin of Kazakh National Women's Teacher Training University. 2018;(3):59-66. (In Russ.)

Просмотров: 325


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2306-5079 (Print)